-- card: 99161 from stack: in -- bmap block id: 100494 -- flags: 0000 -- background id: 2665 -- name: -- part 1 (field) -- low flags: 00 -- high flags: 0002 -- rect: left=288 top=22 right=46 bottom=348 -- title width / last selected line: 0 -- icon id / first selected line: 0 / 0 -- text alignment: 0 -- font id: 3 -- text size: 12 -- style flags: 0 -- line height: 16 -- part name: F1 -- part 2 (field) -- low flags: 00 -- high flags: 0002 -- rect: left=288 top=48 right=72 bottom=348 -- title width / last selected line: 0 -- icon id / first selected line: 0 / 0 -- text alignment: 0 -- font id: 3 -- text size: 12 -- style flags: 0 -- line height: 16 -- part name: F2 -- part 3 (field) -- low flags: 00 -- high flags: 0002 -- rect: left=288 top=74 right=98 bottom=348 -- title width / last selected line: 0 -- icon id / first selected line: 0 / 0 -- text alignment: 0 -- font id: 3 -- text size: 12 -- style flags: 0 -- line height: 16 -- part name: F3 -- part 4 (field) -- low flags: 00 -- high flags: 0002 -- rect: left=288 top=100 right=124 bottom=348 -- title width / last selected line: 0 -- icon id / first selected line: 0 / 0 -- text alignment: 0 -- font id: 3 -- text size: 12 -- style flags: 0 -- line height: 16 -- part name: F4 -- part 5 (field) -- low flags: 00 -- high flags: 0002 -- rect: left=287 top=127 right=151 bottom=347 -- title width / last selected line: 0 -- icon id / first selected line: 0 / 0 -- text alignment: 0 -- font id: 3 -- text size: 12 -- style flags: 0 -- line height: 16 -- part name: F5 -- part 6 (field) -- low flags: 00 -- high flags: 0002 -- rect: left=288 top=153 right=177 bottom=348 -- title width / last selected line: 0 -- icon id / first selected line: 0 / 0 -- text alignment: 0 -- font id: 128 -- text size: 10 -- style flags: 256 -- line height: 13 -- part name: F6 -- part 7 (field) -- low flags: 00 -- high flags: 0002 -- rect: left=288 top=180 right=204 bottom=348 -- title width / last selected line: 0 -- icon id / first selected line: 0 / 0 -- text alignment: 0 -- font id: 3 -- text size: 12 -- style flags: 0 -- line height: 16 -- part name: F7 -- part 8 (field) -- low flags: 00 -- high flags: 0002 -- rect: left=288 top=207 right=231 bottom=348 -- title width / last selected line: 0 -- icon id / first selected line: 0 / 0 -- text alignment: 0 -- font id: 3 -- text size: 12 -- style flags: 0 -- line height: 16 -- part name: F8 -- part 9 (field) -- low flags: 00 -- high flags: 0002 -- rect: left=288 top=234 right=258 bottom=348 -- title width / last selected line: 0 -- icon id / first selected line: 0 / 0 -- text alignment: 0 -- font id: 3 -- text size: 12 -- style flags: 0 -- line height: 16 -- part name: F9 -- part 10 (button) -- low flags: 00 -- high flags: 8003 -- rect: left=267 top=316 right=338 bottom=367 -- title width / last selected line: 0 -- icon id / first selected line: 0 / 0 -- text alignment: 1 -- font id: 0 -- text size: 12 -- style flags: 0 -- line height: 16 -- part name: CLEAR ----- HyperTalk script ----- on mouseUp delete line 1 of card field f1 delete line 1 of card field f2 delete line 1 of card field f3 delete line 1 of card field f4 delete line 1 of card field f5 delete line 1 of card field f6 delete line 1 of card field f7 delete line 1 of card field f8 delete line 1 of card field f9 get the location of card field f1 click at it end mouseUp -- part 11 (button) -- low flags: 00 -- high flags: 8003 -- rect: left=378 top=316 right=338 bottom=478 -- title width / last selected line: 0 -- icon id / first selected line: 0 / 0 -- text alignment: 1 -- font id: 0 -- text size: 12 -- style flags: 0 -- line height: 16 -- part name: CALCULATE ----- HyperTalk script ----- on mouseUp set numberFormat to "00.000" put the value of sqrt((card field f1 * card field f2) / (card field f3)) into card field f6 put the value of (card field f1 - card field f4) into card field f7 put the value of (card field f2 - card field f5) into card field f8 put the value of (1.96 * card field f6) into card field f9 end mouseUp -- part 12 (button) -- low flags: 00 -- high flags: 8003 -- rect: left=205 top=315 right=337 bottom=256 -- title width / last selected line: 0 -- icon id / first selected line: 0 / 0 -- text alignment: 1 -- font id: 0 -- text size: 12 -- style flags: 0 -- line height: 16 -- part name: NEXT ----- HyperTalk script ----- on mouseUp go to next card end mouseUp -- part 13 (button) -- low flags: 00 -- high flags: 8003 -- rect: left=149 top=314 right=337 bottom=199 -- title width / last selected line: 0 -- icon id / first selected line: 0 / 0 -- text alignment: 1 -- font id: 0 -- text size: 12 -- style flags: 0 -- line height: 16 -- part name: PREV. ----- HyperTalk script ----- on mouseUp go back end mouseUp -- part contents for background part 1 ----- text ----- STANDARD DEVIATION #1 -- part contents for background part 2 ----- text ----- Suppose you self two Drosophila flies heterozygous for brown eyes. You would expect a 3:1 phenotypic ratio of wild vs brown in the F1. Suppose however out of 50 flies, you observe 20 that are brown and 30 that are wild. Is this the sort of spread you could reasonably expect if the phenotypic spread anticipated 37.5 wild and 12.5 brown (the expected 3:1 ratio)? Click on the CLEAR button and then assign the expected phenotypic frequencies to the values p and q. If p is the wild frequency then the expected value should be 0.75 of the total and the q frequency 0.25 of the total. Now, enter those figures into the boxes on the right and test the above data against those expectations. The correct answer is given below. Scroll to the point where it appears. The answers should take these values: Standard deviation = 0.061 obs p - exp p = 0.15 obs q - exp q = -0.15 1.96 stand. dev. = 0.120 Did your calculation coincide with this. If not, did you enter observed p and q frequencies or the actual observed values? If your data did coincide with the answers given, then your data spread does not fit the spread of a normal distribution. The value is well beyond two standard deviations from the mean. Although this card allows you to compare sampled data against an expected spread, its value for our purposes is limited. Sometimes it is useful to determine what the standard deviation of a normal distribution is in an effort to learn something about the spread of the curve. That computation can be made on the next card. If you wish to analyze data in this fashion, flip to it. -- part contents for background part 8 ----- text ----- 44 -- part contents for card part 1 ----- text ----- .75 -- part contents for card part 2 ----- text ----- .25 -- part contents for card part 3 ----- text ----- 50 -- part contents for card part 4 ----- text ----- .60 -- part contents for card part 6 ----- text ----- 00.061 -- part contents for card part 5 ----- text ----- .40 -- part contents for card part 7 ----- text ----- 00.150 -- part contents for card part 8 ----- text ----- -0.150 -- part contents for card part 9 ----- text ----- 00.120